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The mechanism by which an initially unfolded polypeptide chain
folds into its final native structure is still not fully understood despite
the obvious importance of the protein folding problem. A recent
popular approach is to simulate the folding of small proteins either
by all atom molecular dynamics calculations or by models which
make use of a simplified representation of the peptide chairhe
small, independently folded, 36-residue villin headpiece subdomain
(HP36) has been the subject of at least six computational studies,
but there are no reported experimental determinations of its folding . 1 Ribbon di f the chick ilin headoi b )
ate? Recenty, disrbuted computing methods have been applied {25 £, 200 degrem of e cicker win teacpiece subdonaln,
to the protein folding problem, and again HP36 has been an yhich contribute to the hydrophobic core are shown.
important test systerhln this Communication, we report the use

of dynamic NMR line-shape analysis to measure the folding rate

of the villin headpiece subdomain. The protein folds on the time 77.8C

scale of 10us. These measurements provide an important bench-

mark to compare with molecular dynamics simulations and with 66.7°C

theoretical efforts. The results should also prove useful in refine-

ments of diffusion-collision models of folding. 61.7°C
The chicken villin headpiece subdomain (HP36) is the C-terminus

of the actin-bundling protein villif. The numbering system used F47 30.5°C

here corresponds to that used in other publications. The first residue A

is a Met. The second residue is designated Leu42, and the Fa701.1°C

C-terminus is Phe76. Our construct has an amidated C-terminus. = e =0 =7

This does not affect the structure, although it slightly decreases pPmM

the melting temperature. HP36 is made up of three helices (residuesrFigure 2. Temperature-dependetti 500 MHz NMR spectra of HP36.
Asp44-Lys48, Arg55-Phe58, and Leu63-Lys70) which are packed The aromatic region with the CH resonance of F47 is labeled. The
together to form the hydrophobic core (Figure>Tjhe structure resonance due to Phe51 is labeled with a star. Spectra were recorded in

9 L .y p 9 : . . D0 at pD 5.0 (uncorrected meter reading).
of the subdomain is identical to the same region in the intact
headpiecé&s The subdomain folds cooperatively and reversibly. The
Tm of our construct is 67C at pD 5.0. The free energy of unfolding,
AG®, is 2.44 kcal mot! at 25°C.

Dynamic NMR line-shape analysis is an attractive method for
measuring rap|_d fo_Idmg rates, an(_j HP3_6 is an excellent candldateaIIOWS the exchange ratde, = ki + k, to be determined.
for such investigation$.The one-dimensional proton NMR spec- . X -

. Knowledge of the relative population of the native and unfolded
trum exhibits several well-resolved resonances. The resonance due . - .
) . . States in turn allows the folding ratk, and unfolding ratek,, to
to the C4 proton of Phe47 is strongly upfield shifted to 5.51 ppm . . ) . .
. L . be determined. The line shape could be fit using the relative
because of its close proximity to the phenyl rings of Phe51 and

Phe58. A resonance from Phe51 is also well resolved at 6.32 ppm populations as a variable; however, this increases the number of
) . ) ._"adjustable parameters and decreases the precision of the measure-
One of the Val50 methyl resonances is very well resolved and is

found at—0.11 ppm in the native state. Examination of the NMR ment (see Supporting Information). Instead, we independently

spectra recorded on a 500 MHz instrument as a function of determined the population of the two states by conducting CD
P monitored thermal unfolding experiments under identical conditions.

T Department of Chemistry, State University of New York at Stony Brook. The SOO,MHZ l,me S,hape of Phe4? at 660 is shown Injlgure

* Boston University School of Medicine. 3. The simulations indicate a folding rate of 0.371° s™1. To

8 Graduate Programs in Biophysics and in Biochemistry and Structural Biology, investigate the uncertainty i, we systematically varielle and

State University of New York at Stony Brook. . . .
Il Present address: Centre for Protein Engineering MRC, Hills Road, Cambridge, calculated the residuals between the theoretical and experimental

temperature shows that the peaks shift and broaden throughout the

unfolding transition region (Figure 2), indicating that the native

and denatured state are in intermediate to fast exchange.
Analysis of the 500 MHz line shape of the Phe47 C4 proton

CB2 2QH, UK. ; o i ;
Y Present address: Institut de chimie fielaire et biologique, Ecole Poly- line shapg. Changes of 380% '_n kexare rqulred to generate clear
technique Fe&rale de Lausanne, BCH 1015 Lausanne, Switzerland. effects (Figure 3 and Supporting Information).
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Figure 3. Representative example of the line-shape analysis. Top:
Comparison between experimental line sha@pand calculated line shape
(—) for the Phe47 resonance at 500 MHz and 6&7 Bottom: Plots of

the residuals of calculated versus experimental line shape. The center pane
corresponds to the simulation on the top. The left-hand panel corresponds.

to akex 30% less than the best fit, and the right-hand panel corresponds to
a kex 30% greater than the best fit.

Table 1. Kinetic Parameters for the Folding of HP36 Derived from
Variable Temperature Line-Shape Analysis at 500 and 700 MHz?
(A) 500 MHz
Kex (x10° 571 ki (x10°s71) ky (x10°s71)
T(°C) Po F47 F47 F47
56.3 0.28 1.79 1.28 0.51
61.7 0.40 1.75 1.05 0.70
66.7 0.53 0.79 0.37 0.42
72.6 0.68 1.26 0.40 0.86
77.8 0.80 2.59 0.52 2.07
(B) 700 MHz
Kex (x10°s71) ki (x10°s74) ky (x10°s7%)
T(C) po F47 V50 F51 F47 V50 F51 F47 V50  F51
57.2 0.30 3.09 1.13 2.16 0.79 0.93 0.34
62.3 041 253 162 165 149 096 0.97 1.04 0.66 0.68
68.1 057 239 188 161 103 081 0.69 136 1.07 0.92
737 0.72 3.64 147 153 102 041 043 262 1.06 1.10
76.8 0.79 278 141 119 058 030 0.25 220 1.11 094

app denotes population denatured.

It would be desirable to independently estimate the folding rate
using other resonances. This provides an addition test of the
precision ofk; and also helps to test if folding is really two-state.

The large exchange rate and smaller chemical shift differences mean

that none of the other resonances are well suited for line-shape

populated, or the resonances of interest overlap with other peaks.
Many studies of protein folding are conducted neare5and it
would be useful to estimate the folding rate neaf@5The folding

rate at 25°C was obtained by fitting spectra collected in the
transition region of a guanidine denaturation experiment. At 1.93
M guanidine, the folding rate is 1.5 10* s'. There is a large
uncertainty in the rate determination from extrapolation to 0 M
guanidine, but it is on the order of & 10* s1. At 33 °C, the
estimated folding rate is 2.2 10* s,

The measured folding rate of HP36 is consistent with recent
molecular dynamics simulations. The folding rate is much less
sensitive to temperature than the unfolding rd¢ezaries by 5-10x
bver the range of 3377.8°C, whilek, varies by more than 2060.

This could arise if entropic effects dominate the barrier to folding,
or it could reflect the shallow temperature dependenc®Gfging*
expected for a system whereC, foging’ is Smallld The small size

of HP36 naturally leads to small values &C,° and AC; soiding'-
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